
USING GIT FOR
ENSTORE
DMD meeting

Alex Kulyavtsev
2/15/2013

What is git?
•  git is distributed version control system
• written by Linus Torvalds for Linux kernel development
•  allows easy management of large complex code base
• manipulates multiple code change streams
•  large user base
•  common code repositories like github
•  integrated in many IDE, has GUI tools

Git Features
•  git is offline and fast.

•  Most of the time you access files on the local disk

•  snapshot based, not changelogs like cvs
•  git stores snapshot of the project when you commit the

change

Git Features
•  local code management (think RCS)

•  history
•  branches

•  remote repository access (think CVS, SVN)
•  distributed collaboration
•  all distributed repositories “are equal”
•  remote branches can be accessed like local branches

•  has familiar concepts:
•  code repository
•  working tree
•  checkout, commit
•  branches, tags
•  status, diff, log (history)

Git Features
•  git is fast and it is easy to switch to the different branch

and switch back or stash the work
•  very easy manipulation of code in different branches to

accept changes to the files
•  create new branch
•  merge
•  rebase

•  git can store binary files
•  now you can deleted that old empty directory, unlike the

CVS
•  access rights: who can do what in each subtree

Enstore git on redmine
• Enstore git test subproject on Fermilabs’ Redmine

https://cdcvs.fnal.gov/redmine/projects/enstore-git-test

•  Test drive for enstore code converted to git repository
•  right now code is outdated on cdcvs, will be updated soon

• Repository contains imported enstore code with preserved
•  branches
•  modifications history
•  browse, diff source tree

• Wiki has tips
•  how to pull enstore code from enstore git repository
•  links to git documentation

Repositories and Access
•  code is stored in git repositories
•  all repositories for the same project “are equal”

•  there is no “central repository” in git
•  but we all agree to have one repository as central repository to

keep production branch and other branches
•  test enstore repository is on on redmine server cdcvs.fnal.gov
•  We fetch or pull files from remote repository to local repository and

push files to the remote repository

•  access to remote directory through protocols like git,
http(s), ssh. URL looks like:
https://github.com/git/git.git
ssh://p-enstore-git-test@cdcvs.fnal.gov/cvs/projects/enstore-git-test
user@mysrv.fnal.gov:/opt/enstore-git-test/enstore.git

Hashes
• As we commit changes to repository few files are

changing
• All unchanged files in repository refer to the same file

in .git subtree (through SHA hash)
• Similar, only some files are changing when we change

branches
• When we checkout previous revision, branch, pull code

from remote git checks hash and only few files are
updated therefore updates are fast.

Hashes
•  repository files are stored in Unix file system as files in .git

subtree
•  for each repository file the file SHA hash calculated and it

used as file name in repository (but there blobs)
•  there is index which maps files in working directory to the

hashed files in repository
•  instead of CVS file versions like 1.2 or 4.3.1.2 you may

see long hex numbers like for commit id
 commit 7bd3a3bfe9d38da2c1283d331c160be21c08f1bb

•  you may type only 7-8 first hex digits when needed
•  normally you access file by tag or date, or ‘two revisions

before”

Creating git repository: create new
•  Two ways to create local git repository
•  create empty directory, initialize and put files

•  mkdir myproj
•  cd myproj
•  git init
OR initialize git repository in existing tree:
•  cd /opt/enstore
•  git init

•  In either case the new subdirectory .git is created by init
where git keeps its files:

•  repository, index, and other files
•  There are NO files in repository yet
•  Unlike CVS or SVN, there are no extra files in each working

subdirectory
•  maybe except .gitignore if you create it there

Staging area or Index
•  git add is not the same as cvs add
•  There is staging area (index) between working tree and

repository
•  Saving files in local repository is two step process:
•  git add “marks” files which need to be stored into repository

when you do next commit and stores them in staging area
•  git commit stores ‘marked’ files into repository

•  <<change file1 file2 file3>>
•  git add file1 file2
•  git commit –m “some changes”
•  git add file3
•  <<change file4>>
•  git add file4
•  git commit –m “more changes”

git add
• You need to do ‘git add’ each time you changed the file

and tell git you want to stage it
•  There are shortcuts:
•  If git tracks the file (you did “git add”)

•  git commit -m "the test 2" -- test.txt

•  to save all changed files, git does ‘add’ and then ‘commit’
•  git commit –a –m “all my changes”

•  beware you may commit some old change.

Some other Commands
•  Now we have files in repository, try

•  git help
•  git help checkout
•  man git-checkout

•  git status
•  git status –s
•  git status –uno

•  git log myfile
•  git log –oneline
•  git log –oneline –graph

•  git diff myfile

•  There are modifications of some of these commands to operate
files in cache, to access previous revisions of files

Branching
•  $ git branch

* master
shows the current branch. “master” is the name of default branch created
when you initialized git
•  Create new branch

 $ git branch cdf_test_config
You’re still at master. Change files and commit

 $ git commit –am “commiting all changed files”
Switch to new branch

 $ git checkout cdf_test
Do some work, commit to test branch

 $ emacs some_file
 $ git commit –am “commiting all changes to test branch”

Get back to your default branch
 $ git checkout master
 $ git status

Branches, Tags
• When creting new branch you may want to switch to it

immediately:
git checkout -b newbranch

•  is the same as
git branch newbranch
git checkout newbranch

• Create annotated tag all files in current branch
git tag -a v1.0

Now you can refer to files in this snapshot by this tag

Remote Repositories
•  The other way to start work and create local repository is

to copy files from some other git remote (upstream)
repository.
•  $ git clone git://github.com/someuser/somerepo.git

•  You can check, set, remove alias for remote directory:
•  To simplify typing use aliases. Check remote alias defined

$ git remote –v
my-repo ssh://z.fnal.gov//opt/en.git (fetch)
my-repo ssh://z.fnal.gov//opt/en.git (push)

• Add new repository with alias “github”
git remote add en-srv mysrv.fnal.gov:/opt/enstore-git-test/enstore.git
git remote add en-cdsrv \
ssh://p-enstore-git-test@cdcvs.fnal.gov/cvs/projects/enstore-git-test e-g-t--git-clone

alias ‘origin’ is set as default name for the URL after you fetched files
from remote server, you can check URL with “git remote”

Remote Repositories
• Get all branches from remote server to local repository,

but do not update working tree
git fetch en-cdsrv
git fetch <full-URL>

•  ‘fetch’ copies files to local repository but does not change
work tree. To get these files you need to do merge

•  pull is equivalent of fetch + merge for the remote
branch with current branch, like “cvs checkout”

• Publish code from local repository to remote
 git push master branch_1_0
 git push en-cdsrv my_test_branch

Remote Repositories
•  remote branches used like local branches
• merge branch ‘production’ from remote repository

‘enstore’ to the current branch:
git merge enstore/production

•  List changes on remote server since last update:
git log origin/master ^master

• Update all branches from all remote repositories
git fetch --all

Links
•  Intro
 http://gitref.org

•  Git visual cheat sheet:
 http://ndpsoftware.com/git-cheatsheet.html#loc=workspace;

Internals:
 http://ftp.newartisans.com/pub/git.from.bottom.up.pdf

• Enstore git test subproject on Fermilabs’ Redmine
https://cdcvs.fnal.gov/redmine/projects/enstore-git-test

Questions ?

• 

